organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N³,N⁶,2,5,7-Pentaphenyl-2,5,7-triazabicyclo[2.2.1]heptane-3,6-diamine

Amir Taheri* and Sayed Mojtaba Moosavi

Department of Chemistry, Imam Hossein University, Tehran, Iran Correspondence e-mail: amir.tahery1@gmail.com

Received 8 June 2009; accepted 24 June 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.072; data-to-parameter ratio = 8.9.

In the title compound, $C_{34}H_{31}N_5$, the observed molecular geometry suggests that anomeric effects are present in terms of short C–N bond lengths and reduced pyramidality of the N atoms.

Related literature

For the synthesis of the title compound and the structure of another 2,5,7-triazabicyclo[2.2.1]heptan derivative, see: Taheri & Moosavi (2009). For its precursors, see: Kliegman & Barnes (1970); Taheri & Moosavi (2008). For general background to azanorbornanes, see Alphen, (1933); Alvaro *et al.* (2007); Archelas & Morin (1984); Nitravati & Sikhibhushan (1939, 1941); Potts & Husain (1972); Potts *et al.* (1974); Neunhoeffer & Fruhauf (1969, 1970); Stanforth *et al.* (2002). For the syntheses of polyazapolycyclic compounds, see: Nielsen *et al.* (1990, 1992, 1998). For the anomeric effect, see: Senderowitz *et al.* (1992); Reed & Schleyer (1988); Watson *et al.* (1990); Davies *et al.* (1992).

Experimental

Crystal data

C ₃₄ H ₃₁ N ₅	a = 9.7427 (4) Å
$M_r = 509.64$	b = 16.4049 (7) Å
Orthorhombic, $P2_12_12_1$	c = 17.0658 (7) Å

 $V = 2727.6 (2) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEXII CCD area-detector	27681 measured reflections
diffractometer	3131 independent reflections
Absorption correction: multi-scan	2816 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.060$
$T_{\min} = 0.981, T_{\max} = 0.990$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ 352 parameters $wR(F^2) = 0.072$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ 3131 reflections $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.25 \times 0.15 \times 0.10 \text{ mm}$

T = 100 K

We thank the Chemistry Group of Imam Hossain University for their cooperation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2152).

References

- Alphen, J. V. (1933). Recl. Trav. Chim. Pays-Bas, 52, 47-53.
- Alvaro, G., Fabio, R. D., Gualandi, A., Fiorell, C., Monari, D., Savoia, D. & Zoli, L. (2007). *Tetrahedron*, 63, 12446–12453.
- Archelas, A. & Morin, C. (1984). Tetrahedron Lett. 25, 1277-1278.
- Bruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS, Madison, Wisconsin, USA.
- Davies, J. W., Durrant, M. L., Walker, M. P. & Malpass, J. R. (1992). *Tetrahedron*, 48, 4379–4398.
- Kliegman, J. M. & Barnes, R. K. (1970). J. Org. Chem. 35, 3140-3143.
- Neunhoeffer, V. H. & Fruhauf, H. W. (1969). Tetrahedron Lett. 37, 3151-3154.
- Neunhoeffer, V. H. & Fruhauf, H. W. (1970). Tetrahedron Lett. 38, 3355–3356.
- Nielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A. & Zoli, L. (1998). *Tetrahedron*, 54, 11793–11812.
- Nielsen, A. T., Nissan, R. A., Cafin, A. P., Gilardi, R. D. & Gorge, C. F. (1992). J. Org. Chem. 57, 6756–6759.
- Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. & &Anderson, J. F. (1990). J. Org. Chem. 55, 1459–1466.
- Nitravati, D. D. & Sikhibhushan, D. (1939). Proc. Natl Acad. Sci. India, 9, 93-98
- Nitravati, D. D. & Sikhibhushan, D. (1941). Chem. Abstr. 35, 1033.
- Potts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619–3626.
- Potts, K. T. & Husain, S. (1972). J. Org. Chem. 37, 2049-2050.
- Reed, A. E. & Schleyer, P. V. R. (1988). Inorg. Chem. 27, 3969-3987.
- Senderowitz, H., Aped, P. & Fuchs, B. (1992). Tetrahedron, 48, 1131-1144.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Stanforth, S. P., Tarbit, B. & Watson, M. D. (2002). Tetrahedron Lett. 43, 6015– 6017.
- Taheri, A. & Moosavi, S. M. (2008). Acta Cryst. E64, o2316.
- Taheri, A. & Moosavi, S. M. (2009). Acta Cryst. C65, o115-o117.
- Watson, W. H., Nagl, A., Marchand, A. P., Vidyasagar, V. & Goodin, D. B. (1990). Acta Cryst. C46, 1127–1129.

Acta Cryst. (2009). E65, 01724 [doi:10.1107/S1600536809024416]

N³, N⁶, 2, 5, 7-Pentaphenyl-2, 5, 7-triazabicyclo[2.2.1]heptane-3, 6-diamine

A. Taheri and S. M. Moosavi

Comment

There are different kinds of polyazapolycyclic skeletons (Nielsen *et al.*, 1990) constituted of saturated rings with multiple N atoms, that can be utilized for high–density and energetic compounds syntheses (Nielsen *et al.*, 1992). In cage skeleton, 2,4,6,8,10,12–hexabenzyl–2,4,6,8,10,12–hexaazaisowurtzitane is precursor for 2,4,6,8,10,12–hexanitro–2,4,6,8,10,12–hexaazaisowurtzitane, which is highly energetic compound (Nielsen *et al.*, 1998). In norbornane skeletons, azanorbornane or azabicyclo[2.2.1]heptane (Archelas & Morin, 1984) and diazanorbornane derivatives (Alvaro *et al.*, 2007) have been synthesized and characterized so far, but triazanorbornane derivatives have seldom been reported (Nitravati & Sikhibhushan, 1939, 1941; Alphen, 1933). The syntheses and molecular structures of triazabicyclo[2.2.1]heptaneshave been presented in a few papers without using X–ray crystal structure analysis (Potts & Husain, 1972; Potts *et al.*, 1974; Neunhoeffer & Fruhauf, 1969,1970; Stanforth *et al.*, 2002).

As a part of our continuing efforts on the development of polyazapolycyclics, structural stability and synthesis of 2,5,7–triazabicyclo[2.2.1]heptan derivative (Taheri & Moosavi, 2009) *via* a catalytic reaction between aminoethane derivatives (Kliegman & Barnes, 1970; Taheri & Moosavi, 2008) and glyoxal were recently described another crystal system of the title compound without any solvent on the crystal packing in which geometric parameters for stability of the skeleton is scrutinized by study of anomeric interactions.

The molecular structure of **I** shown in Fig. 1 has racemic configuration, all *S*– and all *R*–configuration molecules and composed of a six–membered piperazine ring and an N atom bridging between the C1 and C4 situations, norbornane skeleton construction. Notwithstanding the presence of two NH groups, *viz*. N31 and N61, and five N atoms carrying lone–pair electrons potentially available for H–bond creation, there are not actually intra– or intermolecular N–H…N or C–H…N hydrogen bonds. As shown in the scheme, the skeleton has a good local twofold symmetry, namely through the N7 bridge and almost perpendicular to the least–squares plane of the piperazine ring. It is noteworthy that the symmetry involves not only the skeleton but also the peripheral phenyl groups, except for that attached to the bridging N7 atom.

The anomeric effect in N—C—N systems investigated extensively (Senderowitz *et al.*, 1992), occurred between a lone pair on N and an antiperiplanar σ^* orbital of the adjacent C—N bond ($n_N \rightarrow \sigma^*_{C-N}$), negative hyperconjugation (Reed & Schleyer, 1988).

There are four dissimilar anomeric effects manifested by the bond distances and N-atom pyramidality on four N'—C—N" fragments or $n_N' \rightarrow \sigma^*_{C}$ " systems. Within the N'—C—N" unit, the N'—C bond is shorter, than the C—N" bond. On the other hand, the pyramidality of N' (the sum of the three bond angles around N') is larger than that of N". These geometric parameters related to the anomeric effect are shown in Tabl. 1. Among them, the $n_{N5}\rightarrow\sigma^*_{C4}$ system shows a distinguished anomeric interaction and the largest bond–length difference [0.029 (2)Å], which is comparable to that reported for an other crystal system (Taheri & Mossavi, 2009).

However, the pyramidality differences in the N'—C—N" units are not so indicative. The differences within the N2—C2—N7 and N7—C4—N5 systems are 16.14 (16) and 17.83 (15)°, respectively, and these are much larger, than those for the N31—C3—N2 and N61—C6—N5 groups, 2.95 and 0.21°, respectively. Furthermore, the calculated pyramidalities for atoms N31 and N61 are not accurate because they include H atoms, whose positions were determined from adifference Fourier synthesis. Thus, the anomeric effect on the pyramidality is not clear in this molecule. It could be that, the anomeric effect on the angle is buried among the steric effects caused by the crowding of the substituent groups, which would strongly affect the molecular structure.

Reflecting the local twofold symmetry, the corresponding N atoms in this symmetric skeleton (N2 and N5, N31 and N61) have nearly the same pyramidality. The pyramidality angle of N7 [330.71 (19)°] is rather small, and the attached phenyl group is inclined from the local twofold axis in the direction of atoms N2, C3 and N31. Corresponding to this inclination, the C72—C71—N7 angle [122.79 (17)°] is distorted from theideal value of 120°, which is attributable to the short contact between the voluminous phenyl ring and the skeleton. For example, the H76…H1 separation (atom C1 is the bridgehead) is only 2.281Å. The same distortion is seen in another norbornane derivative [122.5 (4)°; Watson *et al.*, 1990] for the phenyl ring on the bridging N7 atom.

The angle at the bridging N atom, C1—N7—C4, is 94.11 (13)°. Although this bridge angle is comparable to those reported for norbornane and diazanorbornane (Davies *et al.*, 1992), it still indicates the presence of ring strain.

Experimental

Aqueous glyoxal (40% v/v, 1.15 ml, 0.01 mol) was added dropwise to a stirred solution of 1,1',2,2'-tetrakis(phenylamino)ethane (3.94 g, 0.01 mol) in ethanol (50 ml). The solution temperature was kept at 273 K during the reaction. The mixture was put aside for 24 h at a temperature of 278–283 K. The resulting white precipitate was filtered off and washed with cold ethanol to give 2.53 g (55% yield) of I (m.p. 428 K).

¹H NMR (CDCl₃): ¹H 6.59–7.30 (m, 25H, CH_{Ar}), 5.69 (s, 2H, CH), 4.93 (d, 2H, J = 10 Hz, CH), 3.69 (d, 2H, J = 10 Hz, NH). Addition of D₂O to the NMR sample caused the NH signals to disappeared and the CH doublet quickly converted to a singlet.

¹³C NMR (CDCl₃): ¹³C 144.8, 144.2, 143.6,129.3, 129.7, 122.1, 119.4, 118.7, 117.4, 113.7, 113.2 (CH_{Ar}), 76.0 (CH), 72.4 (CH).

Refinement

The H atoms of the NH–groups were located in the difference Fourier map and refined in rigid model with fixed $U_{iso}(H) = 1.2U_{eq}(N)$ parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed $U_{iso}(H) = 1.2U_{eq}(C)$ parameters. Friedel opposites were merged

Figures

Fig. 1. The molecular structure of **I**, with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

$N^3, N^6, 2, 5, 7$ -pentaphenyl-2, 5, 7-triazabicyclo[2.2.1]heptane-3, 6-diamine

Crystal data

$C_{34}H_{31}N_5$	$F_{000} = 1080$
$M_r = 509.64$	$D_{\rm x} = 1.241 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4705 reflections
a = 9.7427 (4) Å	$\theta = 2.4 - 22.0^{\circ}$
<i>b</i> = 16.4049 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.0658 (7) Å	T = 100 K
V = 2727.6 (2) Å ³	Prism, colourless
Z = 4	$0.25\times0.15\times0.10~mm$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3131 independent reflections
Radiation source: Fine-focus sealed tube	2816 reflections with $I > 2\sigma(I)$
Monochromator: Graphite	$R_{\rm int} = 0.060$
T = 100 K	$\theta_{\text{max}} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -12 \rightarrow 12$
$T_{\min} = 0.981, \ T_{\max} = 0.990$	$k = -20 \rightarrow 20$
27681 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: Full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 0.373P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.072$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{\text{max}} = 0.17 \text{ e} \text{ Å}^{-3}$
3131 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

352 parameters

Extinction correction: none

Primary atom site location: structure-invariant direct methods Absolute structure: 2419 Friedel pairs were merged Secondary atom site location: difference Fourier map

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.66064 (19)	0.61819 (11)	0.23890 (10)	0.0161 (4)
H1A	0.6227	0.6561	0.2793	0.019*
N2	0.70778 (16)	0.53934 (9)	0.26954 (8)	0.0163 (3)
C3	0.71251 (19)	0.48417 (10)	0.20155 (10)	0.0164 (4)
НЗА	0.8095	0.4679	0.1904	0.020*
C4	0.65972 (18)	0.54197 (11)	0.13717 (10)	0.0159 (4)
H4A	0.6216	0.5137	0.0900	0.019*
N5	0.77088 (16)	0.60077 (9)	0.11985 (8)	0.0163 (3)
C6	0.77956 (19)	0.65473 (11)	0.18816 (10)	0.0164 (4)
H6A	0.8698	0.6478	0.2153	0.020*
N7	0.56002 (15)	0.58946 (9)	0.18081 (8)	0.0158 (3)
C21	0.80912 (18)	0.53697 (11)	0.32784 (10)	0.0165 (4)
C22	0.82474 (19)	0.60204 (11)	0.38008 (10)	0.0184 (4)
H22A	0.7685	0.6490	0.3746	0.022*
C23	0.9213 (2)	0.59879 (12)	0.43974 (11)	0.0228 (4)
H23A	0.9299	0.6433	0.4750	0.027*
C24	1.0055 (2)	0.53119 (13)	0.44833 (11)	0.0246 (4)
H24A	1.0723	0.5293	0.4889	0.030*
C25	0.9907 (2)	0.46637 (13)	0.39682 (11)	0.0240 (4)
H25A	1.0482	0.4199	0.4021	0.029*
C26	0.89300 (19)	0.46840 (12)	0.33759 (11)	0.0209 (4)
H26A	0.8830	0.4230	0.3035	0.025*
N31	0.62863 (16)	0.41223 (9)	0.21507 (9)	0.0181 (3)
H31N	0.5424	0.4272	0.2275	0.022*
C32	0.6379 (2)	0.34644 (11)	0.16289 (10)	0.0180 (4)
C33	0.7651 (2)	0.31662 (12)	0.13812 (12)	0.0266 (4)
H33A	0.8470	0.3432	0.1541	0.032*
C34	0.7723 (2)	0.24833 (13)	0.09027 (13)	0.0333 (5)
H34A	0.8595	0.2287	0.0739	0.040*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11} U^{11}	U^{22} U^{33}	U^{12}	U^{13}	i
Atomic displac	cement parameters (Å	²)			
H/6A	0.3//3	0.6850	0.2406	0.026*	
	0.3880 (2)	0.69600 (11)	0.18629 (11)	0.0216 (4)	
п/зА С76	0.2000	0.7890	0.1820	0.035^{+}	
U/3	0.3116 (2)	0.75718(12)	0.13110 (13)	0.0273 (5)	
H/4A	0.2/07	0.8146	0.04//	0.033*	
U/4	0.3232 (2)	0.77245 (12)	0.07143 (13)	0.0276 (5)	
п/3А	0.4190	0.7333	-0.02/8	0.028*	
U/3	0.4118 (2)	0.72570 (12)	0.02695 (12)	0.0236 (4)	
H/2A	0.5510	0.6332	0.0299	0.024*	
U/2	0.49051 (19)	0.66496 (11)	0.06118 (11)	0.0196 (4)	
C/1 C72	0.480/8(18)	0.65048(11)	0.14109(11)	0.0108(4)	
п0/А С71	0.0703	0.65049 (11)	0.2901	0.027°	
U07	0.8468 (2)	0.80/3/(12)	0.27980 (11)	0.0221 (4)	
поод С67	0.9041	0.0/90	0.3712 0.27086 (11)	0.030*	
	0.8319 (2)	0.87877 (13)	0.32424 (13)	0.0302 (3)	
1105A C66	0.7871 0.8510 (2)	0.9905 0.87877 (13)	0.3320	0.039°	
H65A	0.7823 (2)	0.94832 (13)	0.30131 (13)	0.0328 (3)	
1104A	0.0394 0.7825 (2)	0.9944 0.04832 (13)	0.2130	0.034°	
U04	0.7038 (2)	0.94000 (12)	0.23200 (13)	0.0280 (3)	
1103A	0.0411 0.7058 (2)	0.8750 0.94660 (12)	0.1432	0.020°	
С03 Н63 А	0.6411	0.8750	0.18892 (12)	0.0217 (4)	
C63	0.70841(17)	0.80551 (11)	0.21117(10) 0.18892(12)	0.0173(4) 0.0217(4)	
C62	0.0972 0.76841 (19)	0.7403	0.1234 0.21117 (10)	0.021° 0.0173 (4)	
H61N	0.70301 (10)	0.73814 (9)	0.10149 (9)	0.0179(3)	
N61	1.0277 0.76301 (16)	0.0324 0.73814 (0)	0.1270	0.023°	
U56 A	1.0101 (2)	0.6524	0.08871 (11)	0.0194 (4)	
1155A C56	1.2143	0.0100	0.0317 0.08871 (11)	0.027°	
H55A	1.1272(2) 1.21/3	0.58591 (12)	0.04381 (11)	0.0227 (4)	
C55	1.1070	0.5070	0.0421	0.020°	
UJ4 H54A	1.1129 (2)	0.52557 (12)	-0.01237(11)	0.0231 (4)	
C54	1 1120 (2)	0.7505 0.52537(12)	-0.01237(11)	0.020	
U53л	0.9849 (2)	0.49093 (12)	-0.02443(11)	0.0230 (4)	
C53	0.7801 0.9849 (2)	0.4902 0.49093 (12)	-0.024/3(11)	0.024°	
U52	0.8750 (2)	0.31490 (11)	0.02028 (11)	0.0204 (4)	
C52	0.8730(2)	0.51490 (11)	0.07703(10)	0.0197(4)	
C51	0.88738 (19)	0.5259 0.57525 (11)	0.07785 (10)	0.025	
H37A	0.4318	0.3259	0.1535	0.025*	
C37	0.440	0.2108	0.0739	0.031	
H36A	0.3284 (2)	0.23770 (12)	0.0730	0.0239 (3)	
1135A C26	0.0004	0.1017 0.22776(12)	0.0333	0.038	
U35 H35A	0.6540 (2)	0.20843(12) 0.1617	0.00001 (13)	0.0310(3)	
C25	0.6546(2)	0 20845 (12)	0.06601 (12)	0.0216(5)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0168 (9)	0.0159 (8)	0.0157 (8)	0.0015 (7)	-0.0011 (7)	-0.0009 (7)
N2	0.0196 (8)	0.0148 (7)	0.0146 (7)	0.0016 (6)	-0.0009 (6)	-0.0003 (6)
C3	0.0168 (9)	0.0161 (8)	0.0164 (8)	-0.0004 (7)	0.0015 (7)	-0.0008 (7)

C4	0.0150 (8)	0.0169 (9)	0.0157 (8)	-0.0011 (7)	-0.0001 (7)	-0.0002 (7)
N5	0.0177 (8)	0.0163 (7)	0.0149 (7)	-0.0015 (6)	0.0002 (6)	-0.0020 (6)
C6	0.0182 (9)	0.0159 (8)	0.0152 (8)	0.0003 (7)	-0.0011 (8)	0.0003 (7)
N7	0.0170 (7)	0.0174 (7)	0.0131 (7)	0.0011 (6)	-0.0001 (6)	-0.0009 (6)
C21	0.0157 (9)	0.0201 (9)	0.0137 (8)	-0.0013 (7)	0.0018 (7)	0.0031 (7)
C22	0.0199 (9)	0.0190 (9)	0.0163 (9)	-0.0019 (8)	0.0004 (7)	0.0023 (8)
C23	0.0219 (10)	0.0303 (11)	0.0163 (9)	-0.0072 (9)	0.0017 (8)	0.0017 (8)
C24	0.0162 (9)	0.0405 (11)	0.0172 (9)	-0.0028 (9)	-0.0010 (8)	0.0060 (9)
C25	0.0178 (9)	0.0317 (11)	0.0224 (9)	0.0038 (9)	0.0027 (8)	0.0079 (9)
C26	0.0217 (9)	0.0223 (10)	0.0187 (9)	0.0017 (8)	0.0026 (8)	0.0016 (8)
N31	0.0170 (8)	0.0155 (7)	0.0219 (8)	-0.0007 (7)	0.0038 (7)	-0.0006 (6)
C32	0.0237 (10)	0.0141 (8)	0.0163 (8)	-0.0017 (8)	0.0013 (8)	0.0035 (7)
C33	0.0218 (10)	0.0210 (9)	0.0370 (11)	-0.0018 (8)	0.0028 (9)	-0.0053 (9)
C34	0.0308 (11)	0.0253 (10)	0.0439 (13)	0.0029 (10)	0.0108 (11)	-0.0081 (10)
C35	0.0433 (13)	0.0203 (10)	0.0313 (11)	-0.0041 (10)	0.0087 (10)	-0.0062 (9)
C36	0.0334 (11)	0.0235 (10)	0.0209 (10)	-0.0091 (9)	-0.0009 (9)	-0.0001 (8)
C37	0.0240 (10)	0.0196 (9)	0.0186 (9)	-0.0029 (8)	0.0036 (8)	0.0035 (8)
C51	0.0172 (9)	0.0157 (8)	0.0143 (8)	0.0025 (7)	0.0014 (7)	0.0039 (7)
C52	0.0184 (9)	0.0218 (9)	0.0209 (9)	-0.0019 (8)	0.0011 (8)	-0.0005 (8)
C53	0.0257 (10)	0.0223 (10)	0.0229 (9)	0.0034 (8)	0.0028 (9)	-0.0045 (8)
C54	0.0200 (10)	0.0270 (10)	0.0224 (9)	0.0075 (9)	0.0053 (8)	0.0046 (8)
C55	0.0150 (9)	0.0261 (10)	0.0269 (10)	-0.0008 (8)	-0.0016 (8)	0.0070 (8)
C56	0.0211 (9)	0.0180 (9)	0.0189 (9)	-0.0010 (8)	-0.0029 (8)	0.0025 (8)
N61	0.0227 (8)	0.0167 (7)	0.0143 (7)	-0.0021 (7)	-0.0032 (7)	0.0000 (6)
C62	0.0169 (9)	0.0172 (9)	0.0177 (8)	-0.0048 (8)	0.0051 (7)	-0.0014 (7)
C63	0.0199 (10)	0.0218 (9)	0.0236 (10)	-0.0031 (8)	0.0045 (8)	0.0014 (8)
C64	0.0281 (11)	0.0193 (10)	0.0386 (12)	-0.0029 (9)	0.0112 (10)	-0.0005 (9)
C65	0.0328 (12)	0.0255 (11)	0.0401 (12)	-0.0085 (9)	0.0115 (11)	-0.0153 (10)
C66	0.0249 (11)	0.0385 (12)	0.0272 (10)	-0.0102 (10)	0.0017 (9)	-0.0116 (9)
C67	0.0189 (9)	0.0261 (10)	0.0213 (9)	-0.0031 (8)	-0.0005 (8)	-0.0029 (8)
C71	0.0153 (9)	0.0155 (9)	0.0196 (9)	-0.0025 (7)	-0.0031 (7)	-0.0001 (7)
C72	0.0161 (9)	0.0218 (9)	0.0210 (9)	-0.0036 (8)	-0.0015 (8)	0.0004 (8)
C73	0.0246 (10)	0.0251 (10)	0.0213 (10)	-0.0080 (8)	-0.0056 (9)	0.0051 (8)
C74	0.0291 (11)	0.0192 (10)	0.0346 (12)	0.0003 (9)	-0.0126 (10)	0.0030 (9)
C75	0.0272 (11)	0.0211 (10)	0.0335 (11)	0.0069 (8)	-0.0070 (9)	-0.0081 (9)
C76	0.0245 (10)	0.0219 (10)	0.0184 (9)	0.0015 (8)	-0.0033 (8)	-0.0018 (8)

Geometric parameters (Å, °)

C1—N2	1.469 (2)	C36—C37	1.391 (3)
C1—N7	1.472 (2)	С36—Н36А	0.9500
C1—C6	1.566 (2)	С37—Н37А	0.9500
C1—H1A	1.0000	C51—C56	1.396 (3)
N2—C21	1.402 (2)	C51—C52	1.402 (3)
N2—C3	1.472 (2)	C52—C53	1.387 (3)
C3—N31	1.454 (2)	С52—Н52А	0.9500
C3—C4	1.540 (2)	C53—C54	1.385 (3)
С3—НЗА	1.0000	С53—Н53А	0.9500
C4—N7	1.451 (2)	C54—C55	1.388 (3)

C4—N5	1.480 (2)	C54—H54A	0.9500
C4—H4A	1.0000	C55—C56	1.388 (3)
N5—C51	1.406 (2)	С55—Н55А	0.9500
N5—C6	1.466 (2)	С56—Н56А	0.9500
C6—N61	1.451 (2)	N61—C62	1.394 (2)
С6—Н6А	1.0000	N61—H61N	0.9140
N7—C71	1.430 (2)	C62—C67	1.399 (3)
C21—C22	1.399 (2)	C62—C63	1.402 (3)
C21—C26	1.400 (3)	C63—C64	1.381 (3)
C22—C23	1.387 (3)	С63—Н63А	0.9500
C22—H22A	0.9500	C64—C65	1.390 (3)
C23—C24	1.387 (3)	C64—H64A	0.9500
C23—H23A	0.9500	C65—C66	1.383 (3)
C24—C25	1.387 (3)	С65—Н65А	0.9500
C24—H24A	0.9500	C66—C67	1.393 (3)
C25—C26	1.389 (3)	С66—Н66А	0.9500
C25—H25A	0.9500	С67—Н67А	0.9500
C26—H26A	0.9500	C71—C72	1.397 (2)
N31—C32	1.402 (2)	C71—C76	1.398 (3)
N31—H31N	0.9006	C72—C73	1.386 (3)
C32—C37	1.398 (3)	C72—H72A	0.9500
C32—C33	1.398 (3)	C73—C74	1.382 (3)
C33—C34	1.388 (3)	С73—Н73А	0.9500
С33—Н33А	0.9500	C74—C75	1.388 (3)
C34—C35	1.384 (3)	C74—H74A	0.9500
C34—H34A	0.9500	C75—C76	1.386 (3)
C35—C36	1.383 (3)	С75—Н75А	0.9500
С35—Н35А	0.9500	С76—Н76А	0.9500
N2-C1-N7	99.56 (13)	C34—C35—H35A	120.5
N2C1C6	107.62 (14)	C35—C36—C37	120.77 (19)
N7—C1—C6	104.06 (13)	С35—С36—Н36А	119.6
N2—C1—H1A	114.7	С37—С36—Н36А	119.6
N7—C1—H1A	114.7	C36—C37—C32	120.52 (18)
C6—C1—H1A	114.7	С36—С37—Н37А	119.7
C21—N2—C1	119.82 (15)	С32—С37—Н37А	119.7
C21—N2—C3	121.33 (15)	C56—C51—C52	118.57 (17)
C1—N2—C3	105.70 (13)	C56—C51—N5	122.19 (16)
N31—C3—N2	110.87 (14)	C52—C51—N5	119.16 (16)
N31—C3—C4	115.18 (15)	C53—C52—C51	120.51 (18)
N2—C3—C4	99.98 (13)	C53—C52—H52A	119.7
N31—C3—H3A	110.1	C51—C52—H52A	119.7
N2—C3—H3A	110.1	C54—C53—C52	120.67 (18)
С4—С3—Н3А	110.1	С54—С53—Н53А	119.7
N7—C4—N5	104.03 (13)	С52—С53—Н53А	119.7
N7—C4—C3	100.84 (13)	C53—C54—C55	119.03 (18)
N5-C4-C3	107.43 (14)	С53—С54—Н54А	120.5
N7—C4—H4A	114.4	С55—С54—Н54А	120.5
N5—C4—H4A	114.4	C54—C55—C56	120.97 (18)
C3—C4—H4A	114.4	С54—С55—Н55А	119.5

C51—N5—C6	122.58 (15)	С56—С55—Н55А	119.5
C51—N5—C4	119.89 (14)	C55—C56—C51	120.24 (17)
C6—N5—C4	106.07 (13)	С55—С56—Н56А	119.9
N61—C6—N5	108.27 (13)	С51—С56—Н56А	119.9
N61—C6—C1	116.89 (15)	C62—N61—C6	123.55 (14)
N5-C6-C1	99.55 (13)	C62—N61—H61N	115.4
N61—C6—H6A	110.5	C6—N61—H61N	109.8
N5—C6—H6A	110.5	N61—C62—C67	123.32 (17)
С1—С6—Н6А	110.5	N61—C62—C63	118.01 (16)
C71—N7—C4	119.85 (14)	C67—C62—C63	118.60 (17)
C71—N7—C1	116.75 (14)	C64—C63—C62	120.89 (18)
C4—N7—C1	94.11 (13)	C64—C63—H63A	119.6
C22—C21—C26	118.28 (16)	С62—С63—Н63А	119.6
C22—C21—N2	120.50 (16)	C63—C64—C65	120.44 (19)
C26—C21—N2	121.17 (16)	C63—C64—H64A	119.8
C23—C22—C21	120.80 (17)	С65—С64—Н64А	119.8
C23—C22—H22A	119.6	C66—C65—C64	118.98 (19)
C21—C22—H22A	119.6	С66—С65—Н65А	120.5
C24—C23—C22	120.62 (18)	С64—С65—Н65А	120.5
C24—C23—H23A	119.7	C65—C66—C67	121.38 (19)
С22—С23—Н23А	119.7	С65—С66—Н66А	119.3
C23—C24—C25	118.97 (18)	С67—С66—Н66А	119.3
C23—C24—H24A	120.5	C66—C67—C62	119.67 (19)
C25—C24—H24A	120.5	С66—С67—Н67А	120.2
C24—C25—C26	120.94 (19)	С62—С67—Н67А	120.2
C24—C25—H25A	119.5	C72—C71—C76	119.23 (17)
С26—С25—Н25А	119.5	C72—C71—N7	122.79 (17)
C25—C26—C21	120.38 (18)	C76—C71—N7	117.96 (16)
C25—C26—H26A	119.8	C73—C72—C71	119.93 (18)
C21—C26—H26A	119.8	С73—С72—Н72А	120.0
C32—N31—C3	119.19 (15)	C71—C72—H72A	120.0
C32—N31—H31N	114.8	C74—C73—C72	120.86 (18)
C3—N31—H31N	109.9	С74—С73—Н73А	119.6
C37—C32—C33	118.39 (16)	С72—С73—Н73А	119.6
C37—C32—N31	120.28 (17)	C73—C74—C75	119.27 (19)
C33—C32—N31	121.24 (17)	С73—С74—Н74А	120.4
C34—C33—C32	120.37 (19)	С75—С74—Н74А	120.4
С34—С33—Н33А	119.8	C76—C75—C74	120.74 (19)
С32—С33—Н33А	119.8	С76—С75—Н75А	119.6
C35—C34—C33	121.0 (2)	С74—С75—Н75А	119.6
С35—С34—Н34А	119.5	C75—C76—C71	119.91 (18)
С33—С34—Н34А	119.5	С75—С76—Н76А	120.0
C36—C35—C34	118.93 (18)	С71—С76—Н76А	120.0
С36—С35—Н35А	120.5		
N7—C1—N2—C21	179.24 (14)	C3—N31—C32—C37	-137.18 (17)
C6—C1—N2—C21	71.05 (19)	C3—N31—C32—C33	46.4 (2)
N7—C1—N2—C3	37.63 (16)	C37—C32—C33—C34	-0.5 (3)
C6—C1—N2—C3	-70.55 (16)	N31—C32—C33—C34	176.03 (18)
C21—N2—C3—N31	95.41 (19)	C32—C33—C34—C35	0.1 (3)

C1—N2—C3—N31	-123.70 (15)	C33—C34—C35—C36	0.1 (3)
C21—N2—C3—C4	-142.62 (16)	C34—C35—C36—C37	0.1 (3)
C1—N2—C3—C4	-1.74 (17)	C35—C36—C37—C32	-0.6 (3)
N31—C3—C4—N7	83.41 (17)	C33—C32—C37—C36	0.7 (3)
N2—C3—C4—N7	-35.43 (16)	N31—C32—C37—C36	-175.83 (16)
N31—C3—C4—N5	-167.99 (14)	C6—N5—C51—C56	-12.2 (3)
N2-C3-C4-N5	73.16 (16)	C4—N5—C51—C56	-150.44 (16)
N7-C4-N5-C51	179.59 (14)	C6—N5—C51—C52	171.14 (15)
C3—C4—N5—C51	73.24 (19)	C4—N5—C51—C52	32.9 (2)
N7—C4—N5—C6	35.30 (16)	C56—C51—C52—C53	0.4 (3)
C3—C4—N5—C6	-71.05 (16)	N5-C51-C52-C53	177.24 (17)
C51—N5—C6—N61	93.00 (19)	C51—C52—C53—C54	0.8 (3)
C4—N5—C6—N61	-123.91 (15)	C52—C53—C54—C55	-1.7 (3)
C51—N5—C6—C1	-144.42 (16)	C53—C54—C55—C56	1.3 (3)
C4—N5—C6—C1	-1.33 (16)	C54—C55—C56—C51	-0.1 (3)
N2-C1-C6-N61	-171.17 (14)	C52—C51—C56—C55	-0.8 (3)
N7-C1-C6-N61	83.81 (17)	N5-C51-C56-C55	-177.50 (16)
N2-C1-C6-N5	72.62 (15)	N5—C6—N61—C62	-178.74 (16)
N7—C1—C6—N5	-32.40 (16)	C1-C6-N61-C62	70.0 (2)
N5-C4-N7-C71	70.92 (18)	C6—N61—C62—C67	29.8 (3)
C3—C4—N7—C71	-177.85 (14)	C6—N61—C62—C63	-153.34 (17)
N5—C4—N7—C1	-53.25 (15)	N61—C62—C63—C64	-175.32 (18)
C3—C4—N7—C1	57.98 (14)	C67—C62—C63—C64	1.7 (3)
N2-C1-N7-C71	174.81 (14)	C62—C63—C64—C65	-2.4 (3)
C6—C1—N7—C71	-74.18 (17)	C63—C64—C65—C66	1.4 (3)
N2—C1—N7—C4	-58.68 (14)	C64—C65—C66—C67	0.3 (3)
C6—C1—N7—C4	52.34 (15)	C65—C66—C67—C62	-1.0 (3)
C1—N2—C21—C22	27.5 (2)	N61—C62—C67—C66	176.84 (18)
C3—N2—C21—C22	163.02 (15)	C63—C62—C67—C66	0.0 (3)
C1—N2—C21—C26	-155.37 (17)	C4—N7—C71—C72	2.7 (2)
C3—N2—C21—C26	-19.8 (2)	C1—N7—C71—C72	115.13 (19)
C26—C21—C22—C23	0.3 (3)	C4—N7—C71—C76	-178.65 (16)
N2—C21—C22—C23	177.56 (16)	C1—N7—C71—C76	-66.2 (2)
C21—C22—C23—C24	0.7 (3)	C76—C71—C72—C73	2.1 (3)
C22—C23—C24—C25	-0.7 (3)	N7—C71—C72—C73	-179.29 (16)
C23—C24—C25—C26	-0.3 (3)	C71—C72—C73—C74	-0.1 (3)
C24—C25—C26—C21	1.3 (3)	C72—C73—C74—C75	-1.0 (3)
C22—C21—C26—C25	-1.3 (3)	C73—C74—C75—C76	0.2 (3)
N2—C21—C26—C25	-178.49 (16)	C74—C75—C76—C71	1.8 (3)
N2-C3-N31-C32	-169.47 (15)	C72—C71—C76—C75	-2.9 (3)
C4—C3—N31—C32	77.9 (2)	N7—C71—C76—C75	178.37 (17)

Table 1

Geometric parameters relating anomeric interactions in N'-C-N'' fragments (Å, °)

Parameters	$n_{\rm N31} \rightarrow \sigma^*_{\rm C3-N2}$	$n_{\rm N2} \rightarrow \sigma^*_{\rm C2-N7}$	$n_{\rm N7} \rightarrow \sigma^*_{\rm C4-N5}$	$n_{\rm N61} \rightarrow \sigma^*_{\rm C6-N5}$
N'—C	1.454 (2)	1.469 (2)	1.451 (2)	1.451 (2)
C—N"	1.472 (2)	1.472 (2)	1.480 (2)	1.466 (2)
N'—C—N"	110.87 (14)	99.56 (13)	104.03 (13)	108.27 (13)

Pyr N' ^{a,b}	343.89	346.85 (25)	330.71 (19)	348.75
Pyr N"	346.85 (25)	330.71 (19)	348.54 (24)	348.54 (24)

Notes: (a) Pyr denotes the pyramidality of the N atoms, the sum of the three angles around the N atom. (b) s.u. values are estimated from the sum of s.u. values when they are available.

